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Administrative

• Website: cars.mit.edu
• Contact Email: deepcars@mit.edu
• Required: 

• Create an account on the website.
• Follow the tutorial for each of the 2 projects.

• Recommended:
• Ask questions
• Win competition!

http://cars.mit.edu/
mailto:deepcars@mit.edu
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DeepTraffic: Solving Traffic with Deep Reinforcement Learning
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Supervised 
Learning

Unsupervised 
Learning

Semi-Supervised
Learning

Reinforcement
Learning

Standard supervised learning pipeline:

Types of machine learning:

References: [81]
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Perceptron: Weighing the Evidence

References: [78]
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Perceptron: Implement a NAND Gate

• Universality: NAND gates are functionally complete, 
meaning we can build any logical function out of them.

References: [79]
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Perceptron: Implement a NAND Gate
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Perceptron > NAND Gate

References: [80]

Both circuits can represent arbitrary logical functions:

But “perceptron circuits” can learn…
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The Process of Learning:
Small Change in Weights Æ Small Change in Output

References: [80]
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The Process of Learning:
Small Change in Weights Æ Small Change in Output

References: [80]

This requires a “smoothness”

Perceptron Neuron

Smoothness of activation function means: the Δoutput is a linear function of the Δweights and Δbias

Learning is the process of gradually adjusting the weights to achieve any gradual change in the output.
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Combining Neurons into Layers

Feed Forward Neural Network Recurrent Neural Network

- Have state memory
- Are hard to train
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Task: Classify and Image of a Number

References: [80]

Input:
(28x28)

Network:
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Task: Classify and Image of a Number

References: [63, 80]

Ground truth for “6”:

“Loss” function:
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Philosophical Motivation for Reinforcement Learning

Takeaway from Supervised Learning:
Neural networks are great at memorization and not (yet) 
great at reasoning.

Hope for Reinforcement Learning: 
Brute-force propagation of outcomes to knowledge about 
states and actions. This is a kind of brute-force “reasoning”.
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Agent and Environment

• At each step the agent:
• Executes action
• Receives observation (new state)
• Receives reward

• The environment:
• Receives action
• Emits observation (new state)
• Emits reward

References: [80]
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Reinforcement Learning

Reinforcement learning is a general-purpose framework for decision-making:

• An agent operates in an environment: Atari Breakout

• An agent has the capacity to act

• Each action influences the agent’s future state

• Success is measured by a reward signal

• Goal is to select actions to maximize future reward

References: [85]
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Markov Decision Process

𝑠0, 𝑎0, 𝑟1, 𝑠1, 𝑎1, 𝑟2,… , 𝑠𝑛−1, 𝑎𝑛−1, 𝑟𝑛, 𝑠𝑛
state

action

reward

Terminal state

References: [84]
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Major Components of an RL Agent

An RL agent may include one or more of these components:
• Policy: agent’s behavior function
• Value function: how good is each state and/or action
• Model: agent’s representation of the  environment

𝑠0, 𝑎0, 𝑟1, 𝑠1, 𝑎1, 𝑟2,… , 𝑠𝑛−1, 𝑎𝑛−1, 𝑟𝑛, 𝑠𝑛
state

action

reward

Terminal state
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Robot in a Room

+1

-1

START

actions: UP, DOWN, LEFT, RIGHT

UP

80% move UP
10% move LEFT
10% move RIGHT

• reward +1 at [4,3], -1 at [4,2]
• reward -0.04 for each step

• what’s the strategy to achieve max reward?
• what if the actions were deterministic?
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Is this a solution?

+1

-1

• only if actions deterministic
• not in this case (actions are stochastic)

• solution/policy
• mapping from each state to an action
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Optimal policy

+1

-1
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Reward for each step -2

+1

-1
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Reward for each step: -0.1

+1

-1
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Reward for each step: -0.04

+1

-1
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Reward for each step: -0.01

+1

-1
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Reward for each step: +0.01

+1

-1
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Value Function

• Future reward 𝑅 = 𝑟1   + 𝑟2  + 𝑟3  + ⋯+ 𝑟𝑛
𝑅𝑡 = 𝑟𝑡 + 𝑟𝑡+1 + 𝑟𝑡+2 +⋯+ 𝑟𝑛

• Discounted future reward (environment is stochastic)

𝑅𝑡 = 𝑟𝑡 + 𝛾𝑟𝑡+1  + 𝛾2𝑟𝑡+2 + ⋯ + 𝛾𝑛−𝑡𝑟𝑛
= 𝑟𝑡 + 𝛾(𝑟𝑡+1  + 𝛾(𝑟𝑡+2  + ⋯))
= 𝑟𝑡 + 𝛾𝑅𝑡+1

• A good strategy for an agent would be to always choose 
an action that maximizes  the (discounted) future
reward

References: [84]
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Q-Learning
• State value function: VS(s)

• Expected return when starting in s and following S

• State-action value function: QS(s,a)
• Expected return when starting in s,

performing a, and following S

• Useful for finding the optimal policy
• Can estimate from experience (Monte Carlo)
• Pick the best action using QS(s,a)

• Q-learning: off-policy
• Use any policy to estimate Q that maximizes future reward:
• Q directly approximates Q* (Bellman optimality equation)
• Independent of the policy being followed
• Only requirement: keep updating each (s,a) pair

s

a

s’

r
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Q-Learning

s

a

s’

r

New State Old State Reward

Learning Rate Discount Factor
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Exploration vs Exploitation

• Key ingredient of Reinforcement Learning

• Deterministic/greedy policy won’t explore all actions
• Don’t know anything about the environment at the beginning
• Need to try all actions to find the optimal one

• Maintain exploration
• Use soft policies instead: S(s,a)>0 (for all s,a)

• ε-greedy policy
• With probability 1-ε perform the optimal/greedy action
• With probability ε perform a random action

• Will keep exploring the environment
• Slowly move it towards greedy policy: ε -> 0
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Q-Learning: Value Iteration

New State Old State Reward

Learning Rate Discount Factor

References: [84]
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Q-Learning: Representation Matters

• In practice, Value Iteration is impractical
• Very limited states/actions
• Cannot generalize to unobserved states

• Think about the Breakout game
• State: screen pixels

• Image size: 𝟖𝟒 × 𝟖𝟒 (resized)
• Consecutive 4 images
• Grayscale with 256 gray levels

𝟐𝟓𝟔𝟖𝟒×𝟖𝟒×𝟒 rows in the Q-table!

References: [83, 84]
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Philosophical Motivation for Deep Reinforcement Learning

Takeaway from Supervised Learning:
Neural networks are great at memorization and not (yet) 
great at reasoning.

Hope for Reinforcement Learning: 
Brute-force propagation of outcomes to knowledge about 
states and actions. This is a kind of brute-force “reasoning”.

Hope for Deep Learning + Reinforcement Learning:
General purpose artificial intelligence through efficient 
generalizable learning of the optimal thing to do given a 
formalized set of actions and states (possibly huge).
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Deep Q-Learning

Use a function (with parameters) 
to approximate the Q-function

• Linear
• Non-linear: Q-Network

References: [83]
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Deep Q-Network: Atari

Mnih et al. "Playing atari with deep reinforcement learning." 2013.

References: [83]
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Deep Q-Network Training

• Bellman Equation:

• Loss function (squared error):

References: [83]
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Deep Q-Network Training

Given a transition < s, a, r, s’ >, the Q-table update rule in 
the previous algorithm must be replaced with the 
following:
• Do a feedforward pass for the current state s to get 

predicted Q-values for all actions
• Do a feedforward pass for the next state s’ and calculate 

maximum overall network outputs max a’ Q(s’, a’)
• Set Q-value target for action to r + γmax a’ Q(s’, a’) (use 

the max calculated in step 2).
• For all other actions, set the Q-value target to the same as 

originally returned from step 1, making the error 0 for those 
outputs.

• Update the weights using backpropagation.

References: [83]
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Exploration vs Exploitation

• Key ingredient of Reinforcement Learning

• Deterministic/greedy policy won’t explore all actions
• Don’t know anything about the environment at the beginning
• Need to try all actions to find the optimal one

• Maintain exploration
• Use soft policies instead: S(s,a)>0 (for all s,a)

• ε-greedy policy
• With probability 1-ε perform the optimal/greedy action
• With probability ε perform a random action

• Will keep exploring the environment
• Slowly move it towards greedy policy: ε -> 0
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Atari Breakout

• A few tricks needed, most importantly: experience replay

References: [83]
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Deep Q-Learning Algorithm
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Atari Breakout

References: [85]

After
120 Minutes

of Training

After
10 Minutes
of Training

After
240 Minutes

of Training
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DQN Results in Atari

References: [83]
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Gorila
(General Reinforcement LearningArchitecture)

• 10x faster than Nature DQN on 38 out of 49 Atari games
• Applied to recommender systems within Google

Nair et al. "Massively parallel methods for deep reinforcement learning." (2015).
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The Game of Traffic

Open Question (Again):
Is driving closer to chess or to everyday conversation?
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DeepTraffic: Solving Traffic with Deep Reinforcement Learning

• Goal: Achieve the highest average speed over a long period of time.
• Requirement for Students: Follow tutorial to achieve a speed of 65mph
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The Road, The Car, The Speed

State Representation:
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Simulation Speed
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Display Options
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Safety System
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Driving / Learning
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Learning Input
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Learning Input
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Learning Input
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Evaluation

• Scoring: Average Speed
• Method:

• Collect average speed 
• Ten runs, about 30 (simulated) minutes of game each 
• Result: median speed of the 10 runs

• Done server side after you submit 
• (no cheating possible! (we also look at the code …))

• You can try it locally to get an estimate 
• Uses exactly the same evaluation procedure/code
• But: some influence of randomness
• Our number is what counts in the end!
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Evaluation (Locally)

…

...
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Coding/Changing the Net Layout

Watch out: kills trained state!
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Training

• Done on separate thread (Web Workers, yay!)
• Separate simulation, resets, state, etc.
• A lot faster (1000 fps +)

• Net state gets shipped to the main simulation from time to 
time

• You get to see the improvements/learning live
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Training

…
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Loading/Saving

• Danger: Overwrites all of your code and the trained net
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Submitting

• Submits your code and the trained net state
• Make sure you ran training!

• Adds your code to the end of a queue 
• Gets evaluated some time (no promises here)

• You can resubmit as often as you like
• If your code wasn’t evaluated yet it we still remove it from the 

queue (and move you to the end)
• The highest/most recent???? score counts.
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ConvNetJS / The Actual Deep Learning Part
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ConvNetJS: Settings
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ConvNetJS: Input
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ConvNetJS: Hidden / Fully Connected Layers
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ConvNetJS: Output Layer
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ConvNetJS: Options
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ConvNetJS: Learning
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Technical Details (How We Built The Game)

• Monaco Editor
• HTML5 Canvas
• Web Workers
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Monaco Editor
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HTML5 Canvas
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Web Workers
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Tutorial:

http://cars.mit.edu/deeptraffic

Simulation:

http://cars.mit.edu/deeptrafficjs

http://cars.mit.edu/deeptraffic
http://cars.mit.edu/deeptrafficjs
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Human-in-the-Loop Reinforcement Learning:
Driving Ready?

References: [83]
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Reminder: Unexpected Local Pockets of High Reward

References: [63, 64]
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