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6.5094: Deep Learning for Self-Driving Cars

Learning to Move: Deep Reinforcement Learning for Motion Planning
cars.mit.edu
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Administrative

Website: cars.mit.edu

Contact Email: deepcars@mit.edu

Required:

* Create an account on the website.
* Follow the tutorial for each of the 2 projects.

Recommended:

e Ask questions

* Win competition!

=2

Benedikt Jenik

William Angell Spencer Dodd Dan Brown

Lex Fridman
Instructor TA TA TA TA
I I I mmm  Massachusetts Course 6.5094: Lex Fridman: Website: January
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http://cars.mit.edu/
mailto:deepcars@mit.edu

Schedule

Mon, Jan 9 Introduction to Deep Learning and Self Driving Cars

Learning to Move: Reinforcement Learning for Motion Planning

Tue, Jan 10
DeepTraffic: Solving Traffic with Deep Reinforcement Learning

Learning to Drive: End-to-End Learning for the Full Driving Task
Wed, Jan 11

DeepTesla: End-to-End Learning from Human and Autopilot Driving

Thu, Jan 12 | Karl lagnemma: From Research to Reality: Testing Self-Driving Cars on Boston Public Roads

Fri, Jan 13 John Leonard: Mapping, Localization, and the Challenge of Autonomous Driving

Tue, Jan 17 Chris Gerdes: TBD

Wed, Jan 18 | Sertac Karaman: Past, Present, and Future of Motion Planning in a Complex World

Thu, Jan 19 | Learning to Share: Driver State Sensing and Shared Autonomy

Eric Daimler: The Future of Artificial Intelligence Research and Development
Fri, Jan 20

Learning to Think: The Road Ahead for Human-Centered Atrtificial Intelligence

I I I mmm  Massachusetts Course 6.5094: Lex Fridman: Website: January

Institute of . - . . .
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DeepTraffic: Solving Traffic with Deep Reinforcement Learning

[ )
‘-D 1
(= N

Speed:

.

80 mph U

Cars Passed:

290

s
Road Overlay:

None +

Simulation Speed:

Normal §

Deeplraffic

Americans spend 8 billion hours stuck in traffic every year.
Deep neural networks can help!

w N

-

N B SOw~-Nows

-

o
w

//<! [CDATAL

// a few things don't have var in front of them - they update already

existing variables the game needs
lanesSide = 1; //1;

patchesAhead = 19; //13;
patchesBehind = 8; //7;
trainlterations = 108000;

// begin from convnetjs example

var num_inputs = (lanesSide = 2 + 1) = (patchesAhead + patchesBehind);

var num_actions = 5;

var temporal_window = 3; //1 // amount of temporal memory. @ = agent lives

in-the-moment :)

var network_size = num_inputs * temporal_window + num_actions *

Apply Code/Reset Net

Save Code/Net to File
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Value Function Approximating Neural Network:

input(135) fc(10) relu(10)fc(5)
HEN n

1k

Load Code/Net from File

regression(5)

Submit Model to Competition

I Hmm Massachusetts
I I Institute of
Technology
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Deep Learning for Self-Driving Cars
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Types of machine learning:

mternal state Qf‘i eward
environment
o v e S 1 :
O (o] o] (o) (o) © ¥ .
Oo O?O 0700?0 :O?.O?O: action
. OO OO0 OO0 1 OO0 00,
‘ ‘ o o o - o . : leaming mte -
. : __________ 1 iqveme temperature f} -
discount rate ¥ Observatlon
Supervised Unsupervised Semi-Supervised Reinforcement
Learning Learning Learning Learning
Standard supervised learning pipeline:
Training J
; | sREgE (o) e
m Feature W oSS l 1;':;" | Model Eval
{Train) Extraction —i Model | Model
_’ Me— ——
[y
Predicting
-
New Feature
Data | Extraction Labels
N e—
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Perceptron: Weighing the Evidence

0.7
Q O
O (D
- | ; (@]
Q 0.6 sum bias 05 | n
§e. _4‘ | S
0 E——— i O
> -
Ll W
1.4
Start
1. weigh 2.sumup 3. activate

0 if Zj w;z; < threshold

output = .
if »° jW;T; > threshold

I BE Massachusetts Ref . [78 Course 6.5094: Lex Fridman: Website: January
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Perceptron: Implement a NAND Gate

A
.

Q=NOT(AANDB)

Truth Table

Input A InputB | Output Q

0 0 1
0 1 1
1 0 1
1 1 0

* Universality: NAND gates are functionally complete,
meaning we can build any logical function out of them.

mmm  Massachusetts Course 6.5094: Lex Fridman:
||||| Institute of References: [79]
chnology
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Perceptron: Implement a NAND Gate

0 = 9 0 = )
: 1
0 w2 1 »

(-2)*0 + (-2)*0+3=3 (-2)*0 +(-2)*1+3=1

Truth Table
Input A InputB | Output Q

0 0 1
0 1 1
1 0 1
1 1 0

1 =1 9 1 =1 _ o

-21:>—'0 _2§>—;1
1 22 0 =2
(-2)*1 + (-2)*1+3=-1 (-2)*1 + (-2)*0+3=1
I Course 6.5094: Lex Fridman: Website: Januar Y
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Perceptron > NAND Gate

Both circuits can represent arbitrary logical functions:

"T~TL
DO—" } sum: xp B a9
} carry bit: xi1x2

But “perceptron circuits” can learn...

1
sum: ry P xo
I
% » carry bit: xyxo
I = — m:tsif:::g?eﬁs . Course 6.5094: Lex Fridman: Website: January
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The Process of Learning:

Small Change in Weights > Small Change in Output

small change in any weight (or bias)

causes a small change in the output

w 4+ Aw

out.put—i—L\out:i)ut.

I - m:‘si::::::;?etts Ref . 180 Course 6.5094: Lex Fridman: Website: Januar
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The Process of Learning:

Small Change in Weights > Small Change in Output

This requires a “smoothness”

0.8~

0.6

0.4

0.2+

0.0

step function

w 4+ Aw

Perceptron

small change in any weight (or bias)

causes a small change in the output

output+Aoutput

sigmoid function

0.8 -

0.6 -

0.4-

o S

0.0 T T T

VA
Neuron

Smoothness of activation function means: the Aoutput is a linear function of the Aweights and Abias

Learning is the process of gradually adjusting the weights to achieve any gradual change in the output.

Hmm Massachusetts

Institute of
Technology

References: [80]
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Combining Neurons into Layers

Feed Forward Neural Network Recurrent Neural Network

- Have state memory
- Are hard to train

I - m:;f::::‘;eﬁs Course 6.5094: Lex Fridman: Website: Januar
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(28x28)

Task: Classify and Image of a Number

Input: 5

S /][q] &

Network:

input layer

(784 neurons)

hidden layer

(nn = 15 neurons)

output layer

0

[

w

6

~1

I Hmm Massachusetts
I I Institute of
Technology

References: [80]
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forward pass

\

log probabilities

image

block of differentiable compute
(e.g. neural net)

-1.2 | -0.36
gradients
1.0 0

A

backward pass

Ground truth for “6”:
y(z) = (0,0,0,0,0,0,1,0,0,0)7

“Loss” function:

Clw,b) = 5" ly(z) - al?

Task: Classify and Image of a Number

Supervised Learning
(correct label is provided)

\\\\\

Mir r:‘“,hg;ﬁs References: [63, 80]
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Philosophical Motivation for Reinforcement Learning

Takeaway from Supervised Learning:

Neural networks are great at memorization and not (yet)
great at reasoning.

Hope for Reinforcement Learning:

Brute-force propagation of outcomes to knowledge about
states and actions. This is a kind of brute-force “reasoning”.

I - m:ts.:a;::g?eus Course 6.5094: Lex Fridman: Website: Januar
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Agent and Environment

e At each step the agent:

 Executes action

* Receives observation (new state)

* Receives reward

* The environment:

* Receives action
* Emits observation (new state)
* Emits reward

Environment ><\
Reward \

iAchon

References: [80]
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Reinforcement Learning

Reinforcement learning is a general-purpose framework for decision-making:
* An agent operates in an environment: Atari Breakout

* An agent has the capacity to act

e Each action influences the agent’s future state
e Success is measured by a reward signal

e @Goalis to select actions to maximize future reward

o DS 5 1 g oskEe 5 1 o obks 5
P . 1]

I II mmm  Massachusetts Course 6.5094: Lex Fridman: Website: January
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Markov Decision Process

S0, A0, 71,51,41, 72, «vo, Sn—=1,An—-1, T, S

T A T
state Terminal state
action
reward
I II BE Massachusetts Ref . [84] Course 6.5094: Lex Fridman: Website: January
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Major Components of an RL Agent

An RL agent may include one or more of these components:
* Policy: agent’s behavior function
* Value function: how good is each state and/or action

* Model: agent’s representation of the environment

S0, A0, 71,S1,41, 72, vos, Sn—=1,An—-1,T1, S
t t t
state Terminal state

action

reward

I - m:f.faf:zfens Course 6.5094: Lex Fridman: Website:
tu . .. . . . 7
I I Technology Deep Learning for Self-Driving Cars fridman@mic.edu cars.mit.edu



Robot in a Room

+1
up
-1
80%
10%
START 10%

* reward +1 at [4,3], -1 at [4,2]

* reward -0.04 for each step

* what’s the strategy to achieve max reward?

 what if the actions were deterministic?

move UP

move LEFT
move RIGHT

actions: UP, DOWN, LEFT, RIGHT

Course
| ttt 1

Technology Deep Lear

6.5094:
ning for Self-Driving Cars

Lex Fridman:

fridman@mit.edu

Website:
ars.mit.edu



Is this a solution?

> | = =

4 ¥

*

* only if actions deterministic
* not in this case (actions are stochastic)

* solution/policy
* mapping from each state to an action

352
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Optimal policy

I BE Massachusetts Course 6.5094: Lex Fridman: Website: January
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Reward for each step -2

I e :“as.s“"“fe“s Course 6.5094: Lex Fridman: Website: January
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Reward for each step: -0.1

I BE Massachusetts Course 6.5094: Lex Fridman: Website: January
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Reward for each step: -0.04

I BE Massachusetts Course 6.5094: Lex Fridman: Website: January
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Reward for each step: -0.01

I BE Massachusetts Course 6.5094: Lex Fridman: Website: January
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Reward for each step: +0.01

I BE Massachusetts Course 6.5094: Lex Fridman: Website: January
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Value Function

* Future reward R=ri+r+r3+---+ 1,

Re=r+npt+tngt+t--+n

e Discounted future reward (environment is stochastic)

Ry = re+yrep1 ¥ Voresa+ -+ vy

=1+ V(1 FY(Tege2 +00))
=1+ YRt41

* A good strategy for an agent would be to always choose
an action that maximizes the (discounted) future
reward

I BE Massachusetts Ref . 84 Course 6.5094: Lex Fridman: Website: January
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Q-Learning

State value function: V*(s) S
e Expected return when starting in s and following ©t

State-action value function: Q%(s,a)

* Expected return when starting in s,
performing a, and following &t

Useful for finding the optimal policy
* Can estimate from experience (Monte Carlo)
* Pick the best action using Q*(s,a)

* Q-learning: off-policy
* Use any policy to estimate Q that maximizes future reward: Q(ss a;) = max Ryy4
* Qdirectly approximates Q* (Bellman optimality equation)
* Independent of the policy being followed
* Only requirement: keep updating each (s,a) pair

Qr11(st, at) = Qt(st, at)+a (RH—l + 7y max Qe(se41, a) — Qe(st, at))

Course 6.5094: Lex Fridman: Website: January
Deep Learning for Self-Driving Cars fridman@mit.edu cars.mit.edu 2017
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Q-Learning

Old State Reward

I I I - r?‘:;:::::;setts Course 6.5094: Lex Fridman: Website: Januar
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Exploration vs Exploitation

Key ingredient of Reinforcement Learning

Deterministic/greedy policy won’t explore all actions

Don’t know anything about the environment at the beginning
Need to try all actions to find the optimal one

Maintain exploration

Use soft policies instead: nt(s,a)>0 (for all s,a)

e-greedy policy

With probability 1-e perform the optimal/greedy action
With probability € perform a random action

Will keep exploring the environment
Slowly move it towards greedy policy: € -> 0

352
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Q-Learning: Value Iteration

Qr11(st, at) = Qe(st, ar)+a (Rt+1 + 7 max Qe(sey1, a) — Qe(st, at))

Old State

initialize Q[num states,num actions] arbitrarily
observe initial state s
repeat
select and carry out an action a
observe reward r and new state s’
Q[s,a] = Q[s,a] + a(r + y max,» Q[s',a'] - Q[s,a])
8= e ¥
until terminated

Course 6.5094: Lex Fridman: Website: January
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Q-Learning: Representation Matters

* In practice, Value Iteration is impractical
 Very limited states/actions
e Cannot generalize to unobserved states

* Think about the Breakout game

 State: screen pixels

* Image size: 84 x 84 (resized)
. Consecutive 4 images 25684X84x4 o\ in the Q-table!

* Grayscale with 256 gray levels

assachusetts Course 6.5094: Lex Fridman:
Refe rences: [83; 84] Deep Learning for Self-Driving Cars fridman@mit.edu

Website:
cars.mit.edu

January
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Philosophical Motivation for Deep Reinforcement Learning

Takeaway from Supervised Learning:

Neural networks are great at memorization and not (yet)
great at reasoning.

Hope for Reinforcement Learning:

Brute-force propagation of outcomes to knowledge about
states and actions. This is a kind of brute-force “reasoning”.

Hope for Deep Learning + Reinforcement Learning:

General purpose artificial intelligence through efficient
generalizable learning of the optimal thing to do given a
formalized set of actions and states (possibly huge).

I = m— m:ts,:af:g?e“s Course 6.5094: Lex Fridman: Website: Januar
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Deep Q-Learning

Use a function (with parameters)

_ : s—  Function [ Qsa)
to approximate the Q-function «—» Approximator|, argets o errors
* Linear

* Non-linear: Q-Network

Q(s,a;0) = Q*(s,a)

Q-value 1

State

Q-value 2

Network

v

et [— LA » s | sote

Action

Q-value 3

R f . 83 Course 6.5094: Lex Fridman: Website: January
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Deep Q-Network: Atari

Convolution
v

Convolution
v

Fully cgnnected

Fully cgnnected

[?Nom:\u;;
= e\ ° [}
= & /m AN :
/] v . o\\ EED
2 // i ? T\
I/ ] N/ B N\ A\
m u{‘"/} . . e \\!
"% 4 ! o i (S
of | @ FH =@ : | ©: =
D‘r‘: . ° .
Y X / \ \ L L] L] f
\ ] T\ B {7/ 4 ¢/
““‘ \ ¥ .é /:g ‘_“L \ L L] L]
\ Dl:l g \\D ) { :
Layer Input Filter size | Stride Num filters | Activation | Output
conv1 84x84x4 8x8 4 32 RelLU 20x20x32
conv2 20x20x32 | 4x4 2 64 RelLU 9x9x64
conv3 9x9x64 3x3 1 64 RelLU 7X7x64
fc4 7x7x64 512 RelLU 512
fcb 512 18 Linear 18

Mnih et al. "Playing atari with deep reinforcement learning." 2013.
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Deep Q-Network Training

* Bellman Equation:

Q(s,a) =r+ymax_Q(s',a")

* Loss function (squared error):

L = IE[(T i ymaxa’Q(S,l a,) IR Q(S, a))z]

i

target

SR Massachusetis Course 6.5094: Lex Fridman: ite:  January
Institute of .
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Deep Q-Network Training

Q-value

Network

N

by

State Action

Given a transition <s, g, r, s” >, the Q-table update rule in
the previous algorithm must be replaced with the
following:

* Do afeedforward pass for the current state s to get
predicted Q-values for all actions

* Do a feedforward pass for the next state s” and calculate
maximum overall network outputs max .. Q(s’, a’)

* Set Q-value target for action to r + ymax . Q(s’, a’) (use
the max calculated in step 2).

* For all other actions, set the Q-value target to the same as
originally returned from step 1, making the error O for those
outputs.

e Update the weights using backpropagation.

N B Massachusetts

Institute of References: [83]

Technology
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Exploration vs Exploitation

Key ingredient of Reinforcement Learning

Deterministic/greedy policy won’t explore all actions

Don’t know anything about the environment at the beginning
Need to try all actions to find the optimal one

Maintain exploration

Use soft policies instead: nt(s,a)>0 (for all s,a)

e-greedy policy

With probability 1-e perform the optimal/greedy action
With probability € perform a random action

Will keep exploring the environment
Slowly move it towards greedy policy: € -> 0

352
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Atari Breakout

* Afew tricks needed, most importantly: experience replay

Average Reward on Breakout 4 ____Average Q on Breakout

,WM | WMN\

N
(6)
o

N
o
o

s ¢
(8
o

Average Action Value (Q)
N

Average Reward per Episode

50 |
J/.,./“ 0.5
0 bt O
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Training Epochs Training Epochs
IIIiI- Egﬁi‘i{%g’iem References: [83] gzzsfezrsrgizgkfor Self-Driving Cars If-r(?Zrl;raiztrj1nCz:Danr11i:t.edu \cl\a((rest?:wti?edu Jzi)nll;ary



Deep Q-Learning Algorithm

initialize replay memory D
initialize action-value function Q with random weights
observe initial state s
repeat
select an action a
with probability ¢ select a random action
otherwise select a = argmax,-Q(s,a’)
carry out action a
observe reward r and new state s’
store experience <s, a, r, s’> in replay memory D

sample random transitions <ss, aa, rr, ss’> from replay memory D
calculate target for each minibatch transition

if ss’ is terminal state then tt = rr

otherwise tt = rr + ymax,-Q(ss’, aa’)
train the Q network using (tt - Q(ss, aa))? as loss

s = s'
until terminated

I I I mmm  Massachusetts Course 6.5094: Lex Fridman: Website: January
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Atari Breakout

= = ima.. — B Bk ima.. — ©

After After After
10 Minutes 120 Minutes 240 Minutes

of Training of Training of Training
I II BE Ihassachusetts Ref - 185 Course 6.5094: Lex Fridman: Website: January
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DQN Resultsin Atari
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Gorila

(General Reinforcement Leaming Architecture)

Distributed Memory

SAMPLE
EXPERIENCES EXPERIENCE

PARAMETERS

PARAMETERS
GRADIENTS

04040

Learners

Actors & Environments

Distributed Q-Networks

e 10x faster than Nature DQN on 38 out of 49 Atari games
* Applied to recommender systems within Google

Nair et al. "Massively parallel methods for deep reinforcement learning." (2015).
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The Game of Traffic

Open Question (Again):
Is driving closer to chess or to everyday conversation?

= =y
™
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DeepTraffic: Solving Traffic with Deep Reinforcement Learning

i - Deeplraffic

Americans spend 8 billion hours stuck in traffic every year.
2 Deep neural networks can help!

//<! [CDATAL
// a few things don't have var in front of them - they update already
existing variables the game needs

WN e

‘ 4 lanesSide = 1; //1;
g 5 patchesAhead = 10; //13;
6 patchesBehind = @; //7;
. 7 trainlterations = 108000;
ujlls| =
BN o R R 9 // begin from convnetjs exanple

[ )
[ )

var num_inputs = (lanesSide # 2 + 1) * (patchesAhead + patchesBehind);
11 var num_actions = 5;
var temporal_window = 3; //1 // amount of temporal memory. @ = agent lives

| Spaed

o D in-the-moment :)

80 mph D 13 var network_size = num_inputs * temporal_window + num_actions *

Cars Passed:

290 Apply Code/Reset Net Save Code/Net to File Load Code/Net from File Submit Mode! to Competition

oik o2k agk o4k osk o6k ozk o8k ogk ik
e

Value Function Approximating Neural Network:
fc(10) relu(10)fc(5) regression(5)
m |}

“50 HTEE
) @ u ] ]
= = 5 =5 =
Road Overlay: a = ] L

] n

None ¢ ] -

] u

Simulation Speed: u L]

Normal §

* Goal: Achieve the highest average speed over a long period of time.
* Requirement for Students: Follow tutorial to achieve a speed of 65mph
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Speed:

47 mph

5

Cars Passed:

The Road, The Car, The Speed

—»)

»)

)

L

_»)

State Representation:

[ T T
N [ N N R I
1 1 1 1 |
I e e e ) e
e e EE e
[ ' .
fgd___ 111 1 1 |
R=s 1 ! ! I |
- (S T S R
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Simulation Speed

= h ™
= D ™ n
n -
-
; 2600
1—\ \-‘
Q [ | P
2 n
0
A o n
Road Overlay: Road Overlay:
None s None =
Simulation Speed: Simulation Speed:
Normal % Fast &
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Road Overlay:

None ¥

Display Options
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™

"
Road Overlay:

Learning Input ¥
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Road Overlay:

Safety System &

EHEEEEEEEE
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o s s s s s s
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bt 111 1 1
A= ! 1 ! ! ! |
| — [ N N A .
1 1 i-

1 1 1| K
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— 11 1 k=
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| — -
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1 1 1 I |
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i i — oy —
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Road Overlay:

Full Map s
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Safety System

. - “8
o e == 0
g ol= i 3

(|

e
J

)
—»)
L

)

™
Road Overlay: Road Overlay: Road Overlay:
Safety System % Safety System 3 Safety System ¢
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Driving / Learning

E=='-| learn = function (state, lastReward) {
——— brain.backward(lastReward):
EE ) var action = brain.forward(state);
N - return action;
™ --L-JD
- ' = s
Q ﬁ var noAction = 0;
= var accelerateAction = 1;
~ var decelerateAction = 2;
g var goLeftAction = 3;
~ var goRightAction = 4;
™
Road Overlay:

Learning Input §
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L
a ||| [[[LILED
Cm pILH L] ]

(m ) =

e

e
e

(I D

=
Road Overlay:

Learning Input §

Learning Input

lanesSide = 1;
patchesAhead = 10;
patchesBehind = 0;

I Hmm Massachusetts
I I Institute of
Technology
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Learning Input

0
ai—n
e
gl lanesSide = 2;
T patchesAhead = 10;
I patchesBehind = 0;
-



Learning Input

A
\
Ly

= 0
EEHD lanesSide = 1;
!ES 0 patchesAhead = 10;
== patchesBehind = 10;
-0
i e OIS g T, M e



Evaluation

Scoring: Average Speed
Method:

e Collect average speed
* Ten runs, about 30 (simulated) minutes of game each
e Result: median speed of the 10 runs

Done server side after you submit
* (no cheating possible! (we also look at the code ...))

You can try it locally to get an estimate
» Uses exactly the same evaluation procedure/code
e But: some influence of randomness
e Our number is what counts in the end!
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Evaluation (Locally)

Start Evaluation Run

Average speed: 51 mph
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Coding/Changing the Net Layout

2 //<![CDATA(
// a few things don't have var in front of them - they update already
existing variables the game needs

w

4 lanesSide = 1;

5 patchesAhead = 10;

6 patchesBehind = 10;

7 trainlterations = 100000;

8

9 // begin from convnetjs example

10 var num_inputs = (lanesSide * 2 + 1) = (patchesAhead + patchesBehind);
11 var num_actions = 5;

12 var temporal_window = 3; //1 // amount of temporal memory. © = agent lives
in-the-moment :)
13 var network_size = num_inputs * temporal_window + num_actions *

Apply Code/Reset Net

Watch out: kills trained state!
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Training

* Done on separate thread (Web Workers, yay!)

* Separate simulation, resets, state, etc.
* Alot faster (1000 fps +)

* Net state gets shipped to the main simulation from time to

time
* You get to see the improvements/learning live
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Training

trainlIterations = 100000;
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Loading/Saving

Save Code/Net to File

e Danger: Overwrites all of your code and the trained net

Load Code/Net from File
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Submitting

Submit Model to Competition

e Submits your code and the trained net state
* Make sure you ran training!

* Adds your code to the end of a queue
* Gets evaluated some time (no promises here)

* You can resubmit as often as you like

* If your code wasn’t evaluated yet it we still remove it from the
queue (and move you to the end)

* The highest/most recent???? score counts.
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ConvNetlS / The Actual Deep Learning Part

Value Function Approximating Neural Network:

input(135) fc(10) relu(10)fc(5) regression(5)
AEEEEEEE EEE 5l n = B
EEEEE EEEEENE &l = = B
dEdCcim maEnm H ) = [
[Rirearey | Bul Peie =i n = B
FEREEEEE @S &R =] [ = 2]
[ s iaagags) il H [
9 R H =
ONEEOEEEEEE [ =
EEEEEEEEEE [ =

NN EEEERDR | n
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ConvNetlJS: Settings

var num_inputs = (lanesSide x 2 + 1) * (patchesAhead + patchesBehind);
var num_actions = 5;

var temporal_window = 3;

var network_size = num_inputs *x temporal_window + num_actions x
temporal_window + num_inputs;
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ConvNetlS: Input

var layer_defs = [];
layer_defs.push({

type: "input’,

out sx: 1,

out_sy: 1,

out_depth: network_size

});

input(135
]
L]
L]

)

|
.|
1|
1]
I
I 5
om
=
=
om
i
mim
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ConvNetlJS: Hidden / Fully Connected Layers

layer_defs.push({
type: "fc',
num_neurons: 10,
activation: 'relu’

r);

(10) relu(10)

e

EEEREEEEER S
EEEEEEEEEN
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ConvNetl]S: Output Layer

layer_defs.push({
type: 'regression’',
num_neurons: num_actions

r);

Ife(5) regression(5)
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ConvNetlJS: Options

var opt = {};
opt.temporal_window = temporal_window;
opt.experience_size = 3000;
opt.start_learn_threshold = 500;
opt.gamma = 0.7;
opt.learning_steps_total = 10000;
opt.learning_steps_burnin = 1000;
opt.epsilon_min = 0.0;
opt.epsilon_test_time = 0.0;
opt.layer_defs = layer_defs;
opt.tdtrainer_options = {
learning_rate: 0.001, momentum: 0.0, batch_size: 64, 12_decay: 0.01
-

brain = new deepqlearn.Brain(num_inputs, num_actions, opt);
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ConvNetlS: Learning

learn = function (state, lastReward) {
brain.backward(lastReward):
var action = brain.forward(state);

draw_net();
draw_stats();

return action;
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Technical Details (How We Built The Game)

e Monaco Editor
* HTML5 Canvas
 Web Workers
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Monaco Editor

<script src="monaco-editor/min/vs/loader. js'></script>

<script>
require.config({
paths: {
'vs': 'monaco-editor/min/vs'
}
})s

require(['vs/editor/editor.main'], function () {
editor = monaco.editor.create(document.getElementById('container'), {
value: "some code ...",
language: 'javascript',
wrappingColumn: 75,
};
});

</script>
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HTMLS5 Canvas

<canvas id="canvas" width="400" height='"700"></canvas>

<script>
var ctx = document.getElementById('canvas').getContext('2d');
ctx.fillStyle = 'rgba(@,120,250,0.5)";
ctx.fillRect(0, @, 100, 100);

</script>
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Web Workers

//main. js
if (window.Worker) {
var myWorker = new Worker('"worker.js");
myWorker.onmessage = function (e) {
console.log(e.data);

//worker.js
postMessage("Hello world!");
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Tutorial:

http://cars.mit.edu/deeptraffic

Simulation:

http://cars.mit.edu/deeptrafficjs
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http://cars.mit.edu/deeptraffic
http://cars.mit.edu/deeptrafficjs

Human expert
positions

Human-in-the-Loop Reinforcement Learning:

Driving Ready?

Supervised Learning

policy network
‘Self Play :

policy network

Reinforcement Learning

‘ Self Play

DeepMind challenge match

Self-play data

U

Computer Programs Calibration Human Players

Lee Sedol (9p)

AlphaGo (Mar 2016) Top player of
4-1 JA‘ past decade
Beats
Nature match Fan Hui (2p)
AlphaGo (Oct 2015) 3-times reigning
50 Euro Champion
KGS

Amateur

Crazy Stone and Zen

humans

Value network
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Reminder: Unexpected Local Pockets of High Reward
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following Google Sheets file:

https://g00.g1/9Xhp2t
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