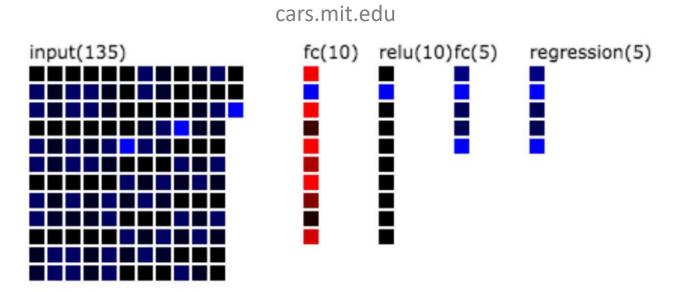


6.S094: Deep Learning for Self-Driving Cars

Learning to Move: Deep Reinforcement Learning for Motion Planning



最专业报告分享群:

•每日分享5+科技行业报告

- 同行业匹配,覆盖人工智能、大数据、机器人、 智慧医疗、智能家居、物联网等行业。
- 高质量用户,同频的人说同样的话

扫描右侧二维码, 或直接搜索关注公众号: 智东西(zhidxcom) 回复"报告群"加入

Administrative

- Website: <u>cars.mit.edu</u>
- Contact Email: <u>deepcars@mit.edu</u>
- Required:
 - Create an account on the website.
 - Follow the tutorial for each of the 2 projects.

• Recommended:

- Ask questions
- Win competition!

Lex Fridman Instructor

Benedikt Jenik TA

William Angell

TA

Spencer Dodd TA

Dan Brown TA

Website:

cars.mit.edu

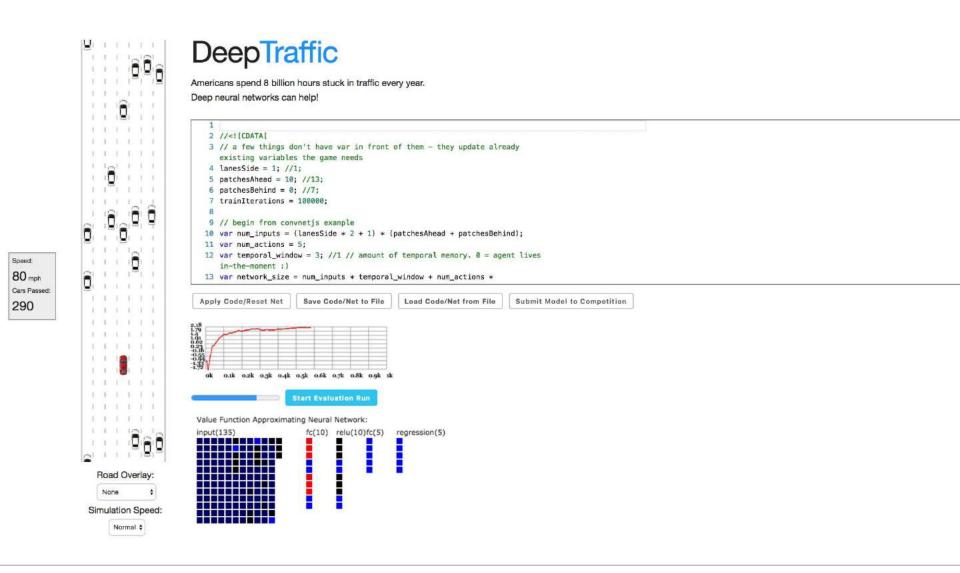
Lex Fridman: fridman@mit.edu

January 2017

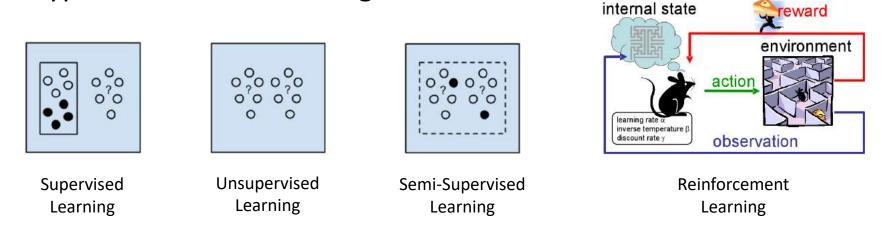
Schedule

Mon, Jan 9	Introduction to Deep Learning and Self Driving Cars			
Tue, Jan 10	Learning to Move: Reinforcement Learning for Motion Planning			
	DeepTraffic: Solving Traffic with Deep Reinforcement Learning			
Wed, Jan 11	Learning to Drive: End-to-End Learning for the Full Driving Task			
	DeepTesla: End-to-End Learning from Human and Autopilot Driving			
Thu, Jan 12	Karl lagnemma: From Research to Reality: Testing Self-Driving Cars on Boston Public Roads			
Fri, Jan 13	John Leonard: Mapping, Localization, and the Challenge of Autonomous Driving			
Tue, Jan 17	Chris Gerdes: TBD			
Wed, Jan 18	Sertac Karaman: Past, Present, and Future of Motion Planning in a Complex World			
Thu, Jan 19	Learning to Share: Driver State Sensing and Shared Autonomy			
Fri, Jan 20	Eric Daimler: The Future of Artificial Intelligence Research and Development			
	Learning to Think: The Road Ahead for Human-Centered Artificial Intelligence			

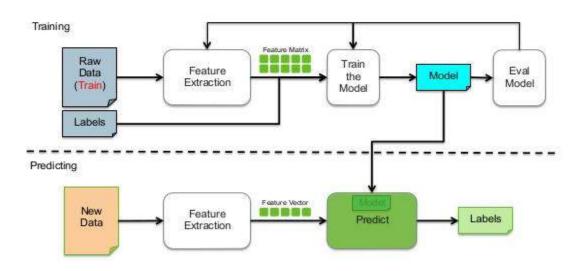
DeepTraffic: Solving Traffic with Deep Reinforcement Learning



Types of machine learning:



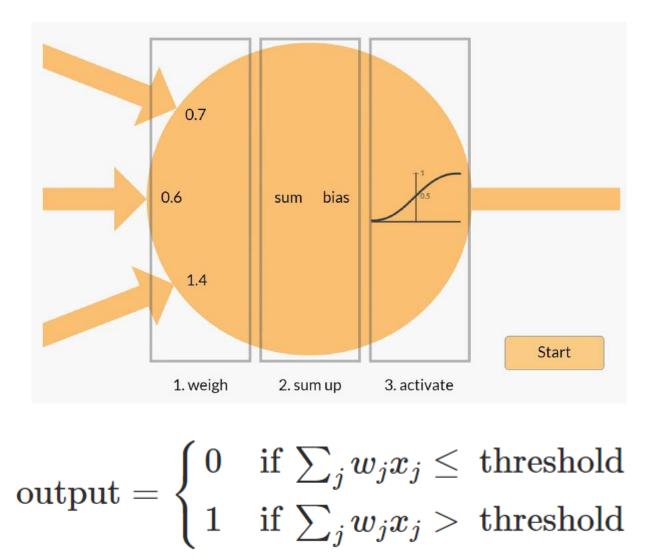
Standard supervised learning pipeline:



References: [81]

Course 6.S094: Deep Learning for Self-Driving Cars Lex Fridman: fridman@mit.edu

Perceptron: Weighing the Evidence



Decisions

References: [78]

Course 6.S094: Deep Learning for Self-Driving Cars Lex Fridman: fridman@mit.edu

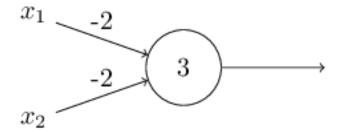
Website: cars.mit.edu

Perceptron: Implement a NAND Gate

 $\mathbf{Q} = \text{NOT}(\mathbf{A} \text{ AND } \mathbf{B})$

Truth Table

Input A	Input B	Output Q
0	0	1
0	1	1
1	0	1
1	1	0



• Universality: NAND gates are functionally complete, meaning we can build any logical function out of them.

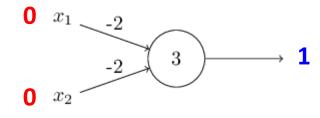
nstitute of

echnology

January

2017

Perceptron: Implement a NAND Gate



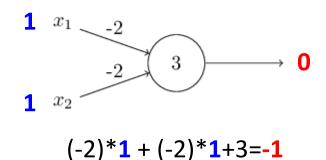
0 x_1 -2 1 3 -2 1 x_2

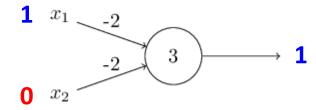
(-2)*0 + (-2)*1+3=1

(-2)***0** + (-2)***0**+3=**3**

Truth Table

Input A	Input B	Output Q
0	0	1
0	1	1
1	0	1
1	1	0





(-2)*1 + (-2)*0+3=1

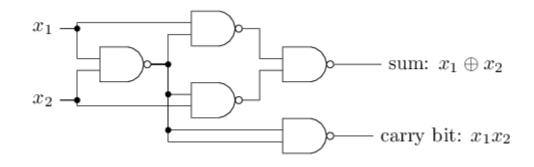
Massachusetts

Course 6.S094: Lex Fridman: Deep Learning for Self-Driving Cars fridman@mit.edu

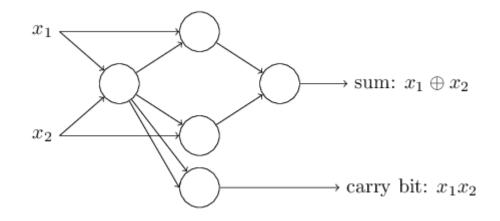
Website: cars.mit.edu

Perceptron > NAND Gate

Both circuits can represent arbitrary logical functions:

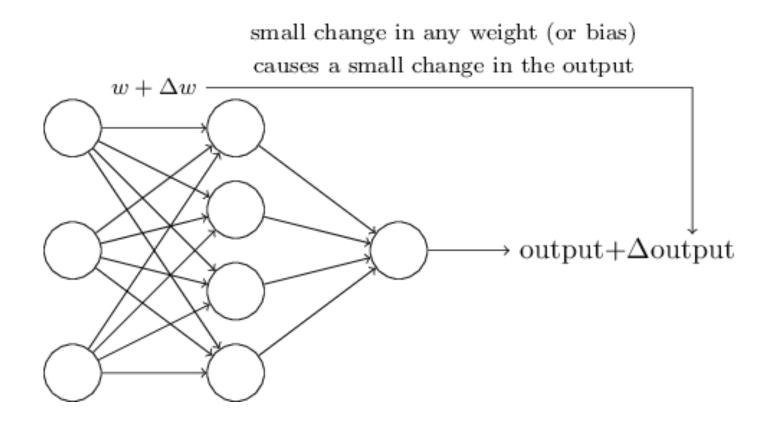


But "perceptron circuits" can learn...



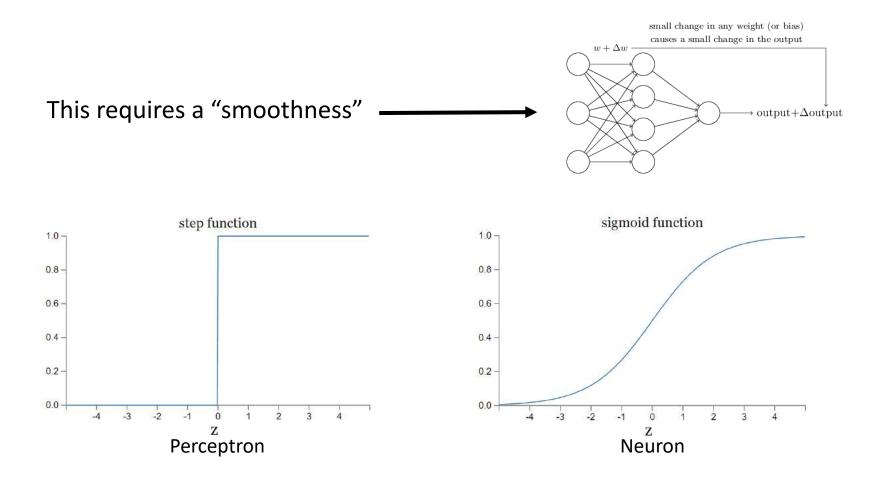
References: [80]

The Process of Learning: Small Change in Weights \rightarrow Small Change in Output



References: [80]

The Process of Learning: Small Change in Weights \rightarrow Small Change in Output

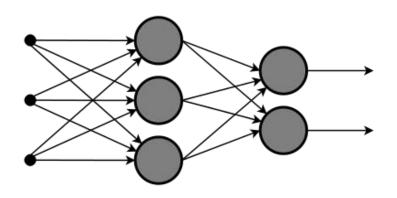


Smoothness of activation function means: the Δoutput is a linear function of the Δweights and Δbias

Learning is the process of gradually adjusting the weights to achieve any gradual change in the output.

Massachusetts	Deferences [00]	Course 6.S094:	Lex Fridman:	Website:	January	
	Massachusetts Institute of Technology	References: [80]	Deep Learning for Self-Drivi	ing Cars fridman@mit.edu	cars.mit.edu	2017

Combining Neurons into Layers



Feed Forward Neural Network



Recurrent Neural Network

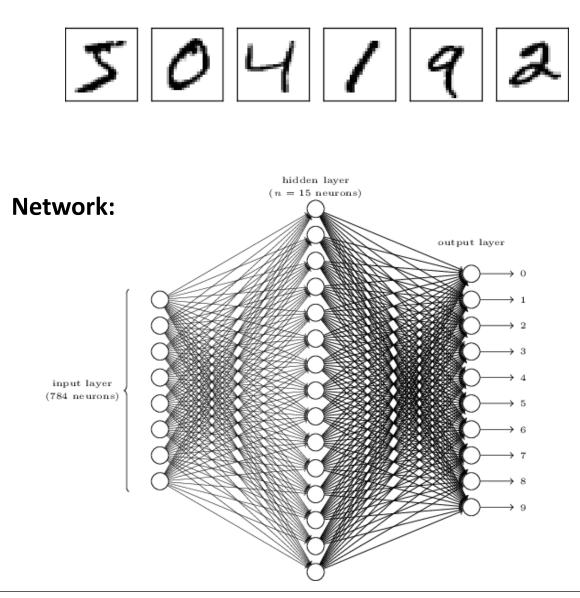
- Have state memory
- Are hard to train

January

2017

Task: Classify and Image of a Number

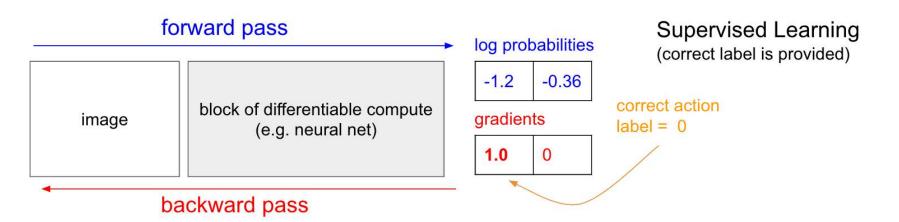
Input: (28x28)



References: [80]

Lex Fridman: fridman@mit.edu

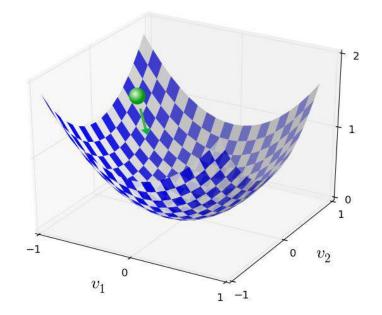
Task: Classify and Image of a Number



Ground truth for "6": $y(x) = (0,0,0,0,0,0,0,0,0,0,0)^T$

"Loss" function:

$$C(w,b)\equiv rac{1}{2n}\sum_x \|y(x)-a\|^2$$



Course 6.S094: Le Deep Learning for Self-Driving Cars fr Philosophical Motivation for Reinforcement Learning

Takeaway from Supervised Learning:

Neural networks are great at memorization and not (yet) great at reasoning.

Hope for Reinforcement Learning:

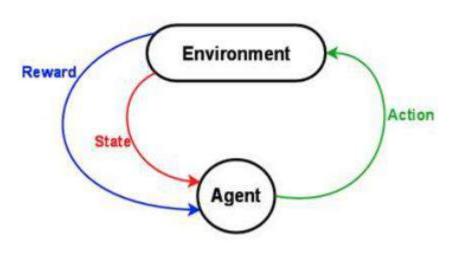
Brute-force propagation of outcomes to knowledge about states and actions. This is a kind of brute-force "reasoning".

January

2017

Agent and Environment

- At each step the agent:
 - Executes action
 - Receives observation (new state)
 - Receives reward
- The environment:
 - Receives action
 - Emits observation (new state)
 - Emits reward



Reinforcement Learning

Reinforcement learning is a general-purpose framework for decision-making:

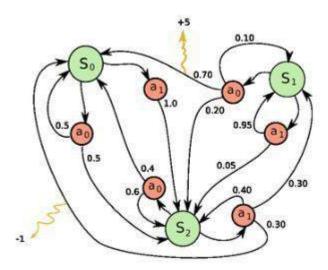
- An agent operates in an environment: Atari Breakout
- An agent has the capacity to act
- Each action influences the agent's **future state**
- Success is measured by a reward signal
- **Goal** is to select actions to maximize future reward

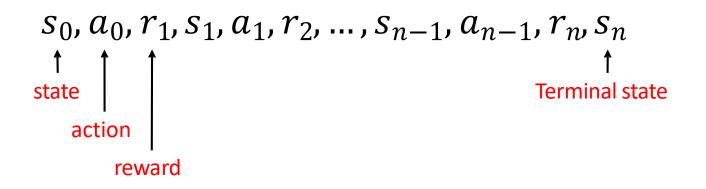
References: [85]

Course 6.S094: Deep Learning for Self-Driving Cars

Lex Fridman: fridman@mit.edu

Markov Decision Process





References: [84]

January

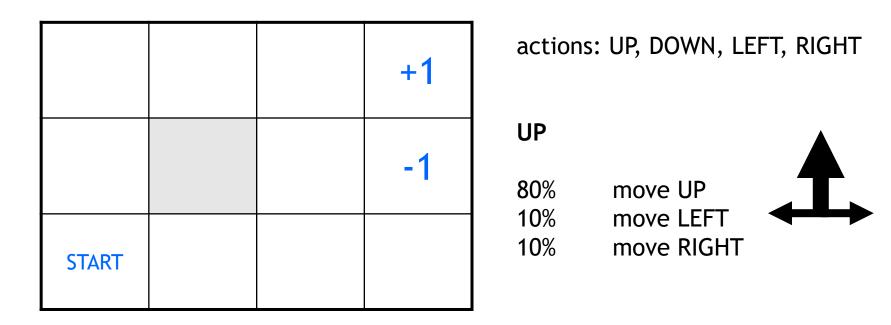
2017

Major Components of an RL Agent

An RL agent may include one or more of these components:

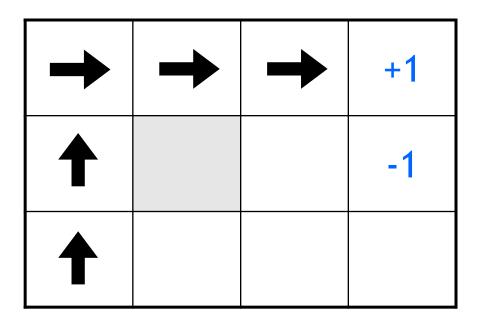
- **Policy:** agent's behavior function
- Value function: how good is each state and/or action
- Model: agent's representation of the environment

Robot in a Room



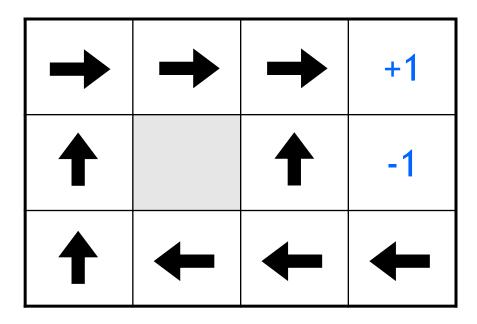
- reward +1 at [4,3], -1 at [4,2]
- reward -0.04 for each step
- what's the strategy to achieve max reward?
- what if the actions were deterministic?

Is this a solution?

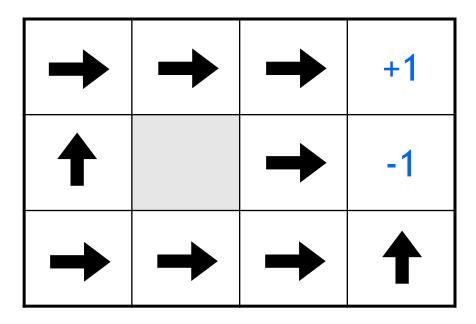


- only if actions deterministic
 - not in this case (actions are stochastic)
- solution/policy
 - mapping from each state to an action

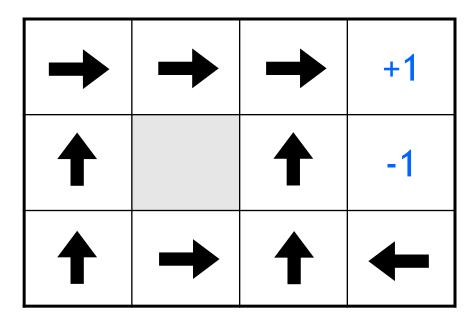
Optimal policy



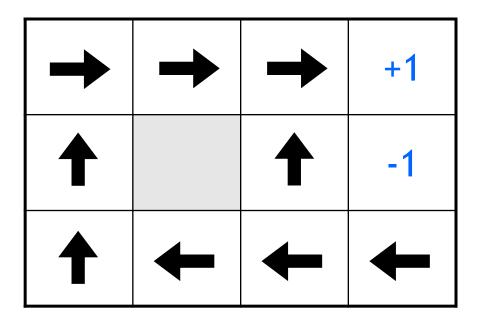
Reward for each step -2



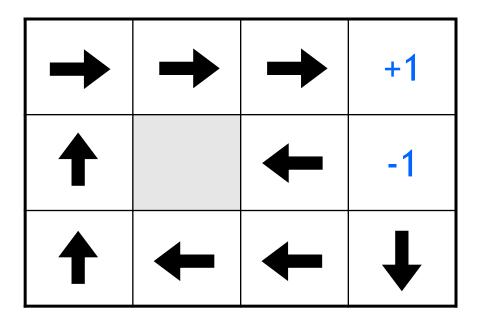
Reward for each step: -0.1



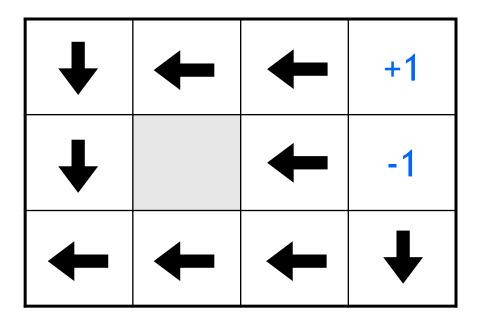
Reward for each step: -0.04



Reward for each step: -0.01



Reward for each step: +0.01



Value Function

- Future reward $R = r_1 + r_2 + r_3 + \dots + r_n$ $R_t = r_t + r_{t+1} + r_{t+2} + \dots + r_n$
- Discounted future reward (environment is stochastic)

$$R_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots + \gamma^{n-t} r_n$$

= $r_t + \gamma (r_{t+1} + \gamma (r_{t+2} + \dots))$
= $r_t + \gamma R_{t+1}$

 A good strategy for an agent would be to always choose an action that maximizes the (discounted) future reward

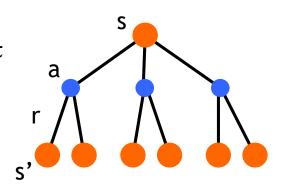
Q-Learning

- State value function: V^π(s)
 - Expected return when starting in s and following π
- State-action value function: Q^π(s,a)
 - Expected return when starting in s, performing a, and following π
- Useful for finding the optimal policy
 - Can estimate from experience (Monte Carlo)
 - Pick the best action using Q^π(s,a)
- Q-learning: off-policy
 - Use any policy to estimate Q that maximizes future reward: $Q(s_t, a_t) = \max R_{t+1}$
 - Q directly approximates Q* (Bellman optimality equation)
 - Independent of the policy being followed
 - Only requirement: keep updating each (s,a) pair

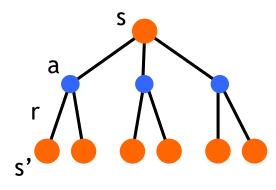
$$Q_{t+1}(s_t, a_t) = Q_t(s_t, a_t) + \alpha \left(R_{t+1} + \gamma \max_a Q_t(s_{t+1}, a) - Q_t(s_t, a_t) \right)$$

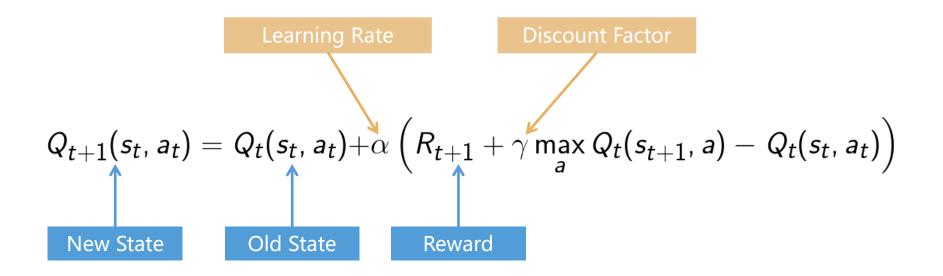
January

2017



Q-Learning

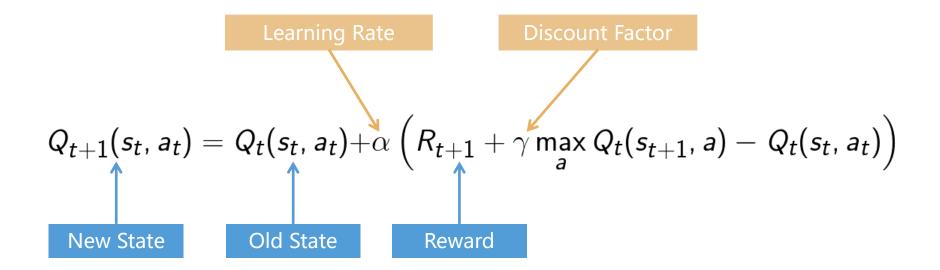




Exploration vs Exploitation

- Key ingredient of Reinforcement Learning
- Deterministic/greedy policy won't explore all actions
 - Don't know anything about the environment at the beginning
 - Need to try all actions to find the optimal one
- Maintain exploration
 - Use *soft* policies instead: $\pi(s,a)>0$ (for all s,a)
- ε-greedy policy
 - With probability 1-ε perform the optimal/greedy action
 - With probability ε perform a random action
 - Will keep exploring the environment
 - Slowly move it towards greedy policy: ε -> 0

Q-Learning: Value Iteration



```
initialize Q[num_states,num_actions] arbitrarily
observe initial state s
repeat
    select and carry out an action a
    observe reward r and new state s'
    Q[s,a] = Q[s,a] + α(r + γ max<sub>a</sub>, Q[s',a'] - Q[s,a])
    s = s'
until terminated
```


Q-Learning: Representation Matters

- In practice, Value Iteration is impractical
 - Very limited states/actions
 - Cannot generalize to unobserved states

- Think about the **Breakout** game
 - State: screen pixels
 - Image size: 84 × 84 (resized)
 - Consecutive **4** images
 - Grayscale with **256** gray levels

 $256^{84 \times 84 \times 4}$ rows in the Q-table!

Philosophical Motivation for **Deep** Reinforcement Learning

Takeaway from Supervised Learning:

Neural networks are great at memorization and not (yet) great at reasoning.

Hope for Reinforcement Learning:

Brute-force propagation of outcomes to knowledge about states and actions. This is a kind of brute-force "reasoning".

Hope for Deep Learning + Reinforcement Learning:

General purpose artificial intelligence through efficient generalizable learning of the optimal thing to do given a formalized set of actions and states (possibly huge).

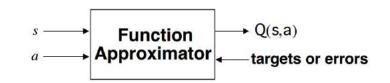
January

2017

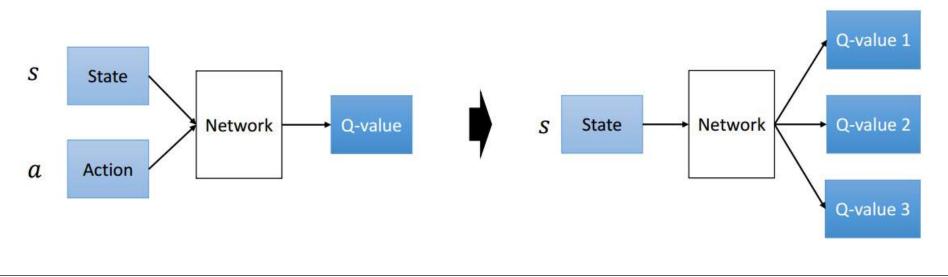
Deep Q-Learning

Use a function (with parameters) to approximate the Q-function

- Linear •
- Non-linear: **Q-Network** ۲



 $Q(s,a;\boldsymbol{\theta}) \approx Q^*(s,a)$



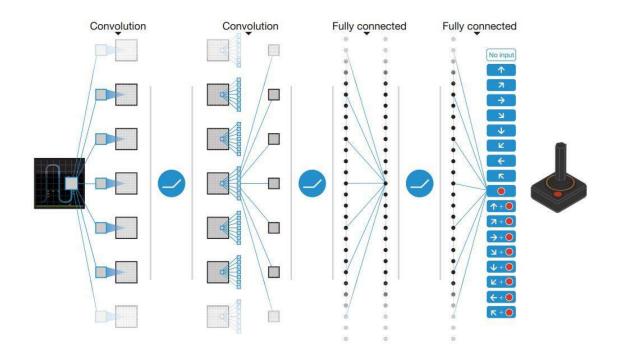
nstitute of

echnology

Lex Fridman: fridman@mit.edu Website: cars.mit.edu January

2017

Deep Q-Network: Atari



Layer	Input	Filter size	Stride	Num filters	Activation	Output
conv1	84x84x4	8x8	4	32	ReLU	20x20x32
conv2	20x20x32	4x4	2	64	ReLU	9x9x64
conv3	9x9x64	3x3	1	64	ReLU	7x7x64
fc4	7x7x64			512	ReLU	512
fc5	512			18	Linear	18

Mnih et al. "Playing atari with deep reinforcement learning." 2013.

References: [83]

Lex Fridman: fridman@mit.edu

Deep Q-Network Training

• Bellman Equation:

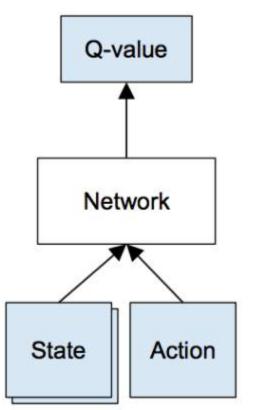
$$Q(s,a) = r + \gamma max_{a'}Q(s',a')$$

• Loss function (squared error):

$$L = \mathbb{E}[(\mathbf{r} + \boldsymbol{\gamma} \max_{a'} \mathbf{Q}(s', a') - Q(s, a))^2]$$

target

Deep Q-Network Training



Given a transition < *s*, *a*, *r*, *s*' >, the Q-table update rule in the previous algorithm must be replaced with the following:

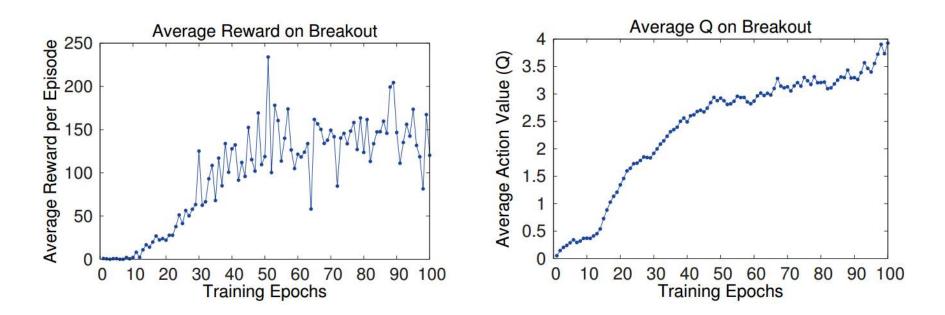
- Do a feedforward pass for the current state s to get predicted Q-values for all actions
- Do a feedforward pass for the next state s' and calculate maximum overall network outputs max a' Q(s', a')
- Set Q-value target for action to *r* + *ymax* _a, *Q(s', a')* (use the max calculated in step 2).
 - For all other actions, set the Q-value target to the same as originally returned from step 1, making the error 0 for those outputs.
- Update the weights using backpropagation.

Exploration vs Exploitation

- Key ingredient of Reinforcement Learning
- Deterministic/greedy policy won't explore all actions
 - Don't know anything about the environment at the beginning
 - Need to try all actions to find the optimal one
- Maintain exploration
 - Use *soft* policies instead: $\pi(s,a)>0$ (for all s,a)
- ε-greedy policy
 - With probability 1-ε perform the optimal/greedy action
 - With probability ε perform a random action
 - Will keep exploring the environment
 - Slowly move it towards greedy policy: ε -> 0

Atari Breakout

• A few tricks needed, most importantly: experience replay



January

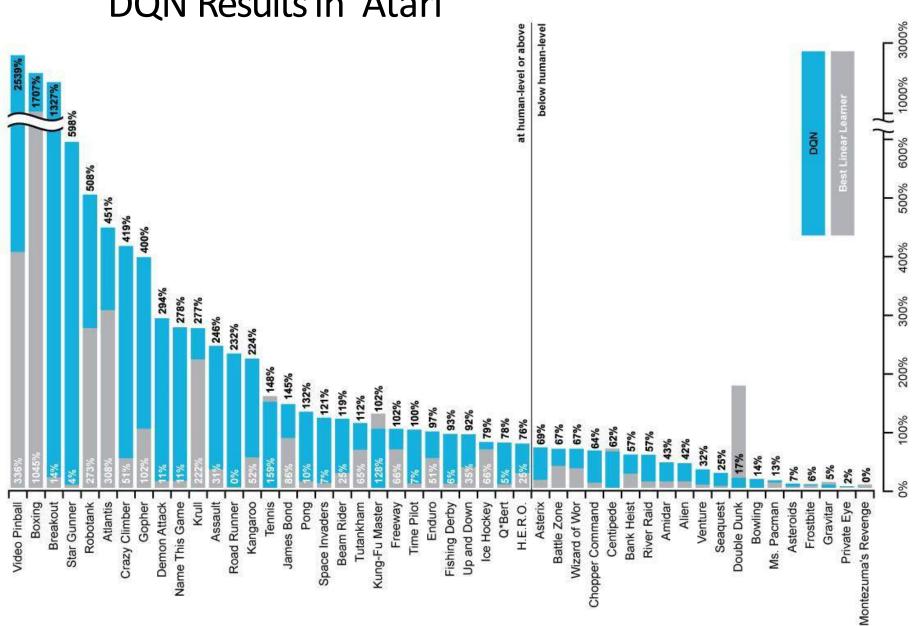
Deep Q-Learning Algorithm

```
initialize replay memory D
initialize action-value function Q with random weights
observe initial state s
repeat
      select an action a
            with probability \varepsilon select a random action
            otherwise select a = \operatorname{argmax}_{a'}Q(s, a')
     carry out action a
     observe reward r and new state s'
      store experience \langle s, a, r, s' \rangle in replay memory D
      sample random transitions <ss, aa, rr, ss'> from replay memory D
      calculate target for each minibatch transition
            if ss' is terminal state then tt = rr
            otherwise tt = rr + \gamma \max_{a'}Q(ss', aa')
      train the Q network using (tt - Q(ss, aa))^2 as loss
      s = s'
```

until terminated

Atari Breakout

After **10 Minutes** of Training After **120 Minutes** of Training After 240 Minutes of Training



DQN Results in Atari

Massachusetts

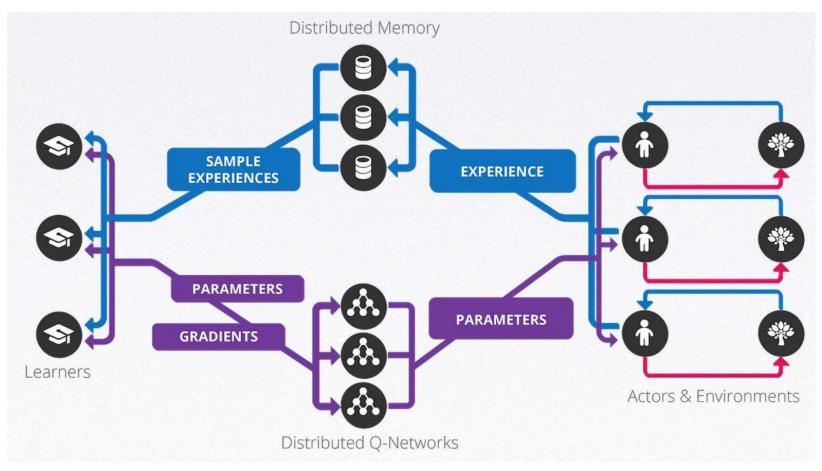
Institute of

Technology

Lex Fridman: Website: fridman@mic.edu cars.mit.edu

Gorila

(General Reinforcement Learning Architecture)



- 10x faster than Nature DQN on 38 out of 49 Atari games
- Applied to recommender systems within Google

Nair et al. "Massively parallel methods for deep reinforcement learning." (2015).

The Game of Traffic

Open Question (Again):

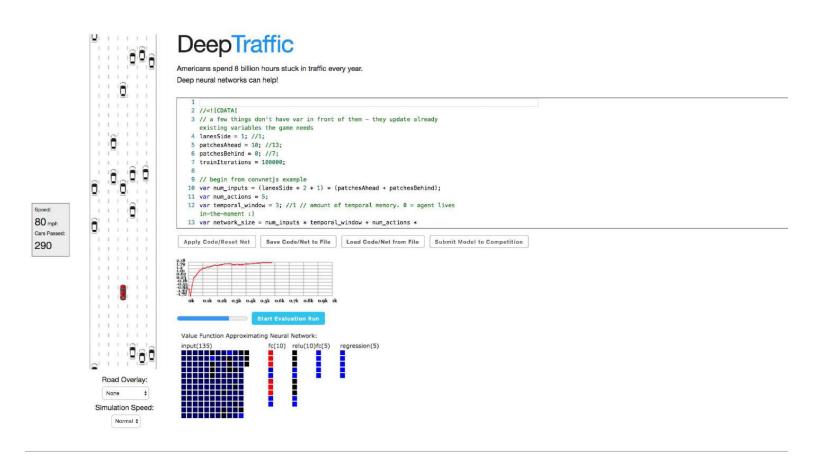
Is driving closer to chess or to everyday conversation?

Course 6.S094: Le Deep Learning for Self-Driving Cars fr

Lex Fridman: fridman@mit.edu

Website: cars.mit.edu

DeepTraffic: Solving Traffic with Deep Reinforcement Learning



- **Goal:** Achieve the highest average speed over a long period of time.
- **Requirement for Students:** Follow tutorial to achieve a speed of 65mph

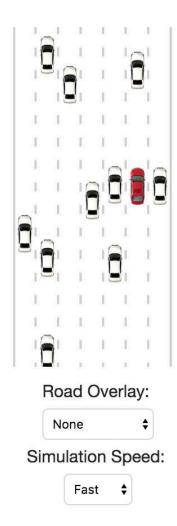
The Road, The Car, The Speed

I.

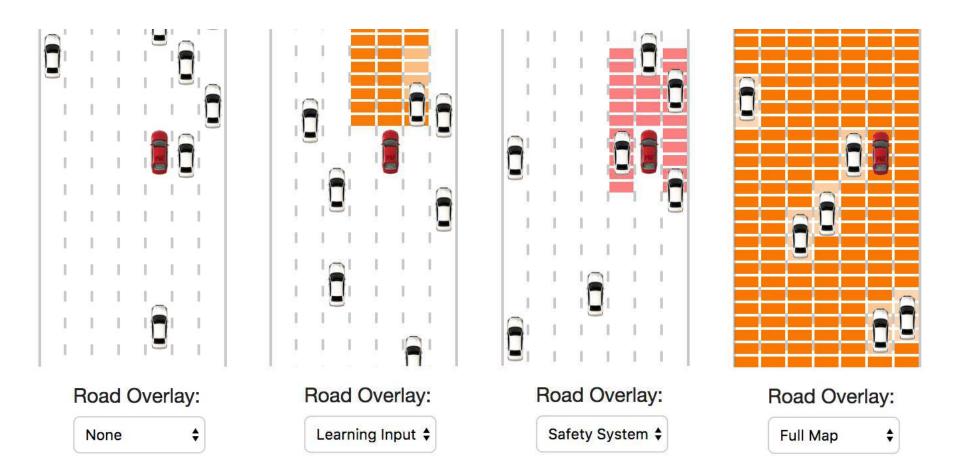
	9	1	1	1	1	1	
	1	1	1	1	1	1	
	- T.	1	1	1	1	1	
	1	1	1	1	1	1	
Speed:	1			1	1	1	
Speed.	1		2	1	1	1	
47 mph	1	1	1	Į.	1	j.	
Cars Passed:	1	1	j.	1	j.	1	
5	1	1	1			1	
5	1	Į.	j.			1	
	1	L	1	1	1	1	
		I.	1		1	1	
		1			j.	1	
	1	1	1	1	1	1	
	1	1	1	10		1	
		L	1		1	1	

State Representation:

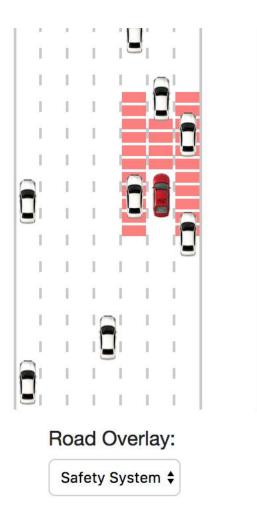
Simulation Speed

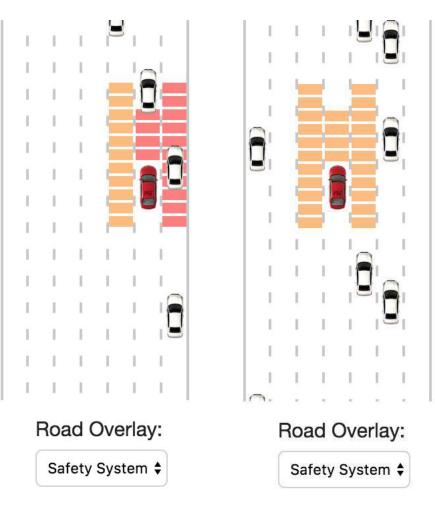


Display Options



Safety System

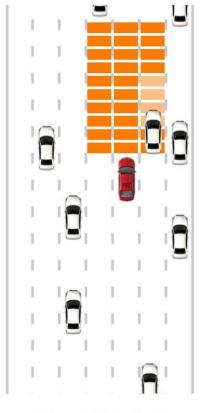




January

Driving / Learning

}



Road Overlay:

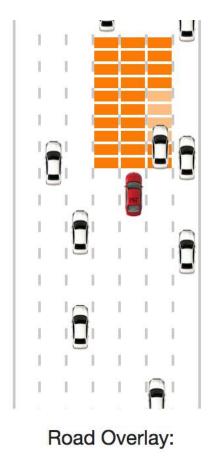
Learning Input \$

learn = function (state, lastReward) {
 brain.backward(lastReward);
 var action = brain.forward(state);
 return action;

```
var noAction = 0;
var accelerateAction = 1;
var decelerateAction = 2;
var goLeftAction = 3;
var goRightAction = 4;
```


January

Learning Input



Learning Input \$

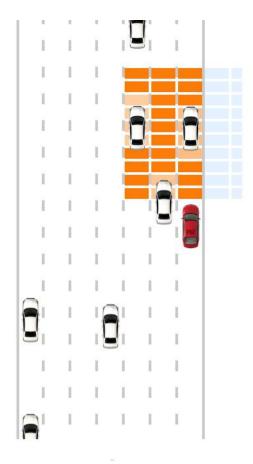
lanesSide = 1; patchesAhead = 10; patchesBehind = 0;

Massachusetts Institute of Technology

Course 6.S094:Lex Fridman:Website:Deep Learning for Self-Driving Carsfridman@mit.educars.mit.edu

January

Learning Input



lanesSide = 2;
patchesAhead = 10;
patchesBehind = 0;

Learning Input

lanesSide = 1;
patchesAhead = 10;
patchesBehind = 10;

Evaluation

- Scoring: Average Speed
- Method:
 - Collect average speed
 - Ten runs, about 30 (simulated) minutes of game each
 - Result: median speed of the 10 runs
- Done server side after you submit
 - (no cheating possible! (we also look at the code ...))
- You can try it locally to get an estimate
 - Uses exactly the same evaluation procedure/code
 - But: some influence of randomness
 - Our number is what counts in the end!

Evaluation (Locally)

...



. . .

Course 6.S094: Le Deep Learning for Self-Driving Cars fr

Lex Fridman: fridman@mit.edu

Coding/Changing the Net Layout

```
1
2 //<![CDATA[
3 // a few things don't have var in front of them - they update already
existing variables the game needs
4 lanesSide = 1;
5 patchesAhead = 10;
6 patchesBehind = 10;
7 trainIterations = 100000;
8
9 // begin from convnetjs example
10 var num_inputs = (lanesSide * 2 + 1) * (patchesAhead + patchesBehind);
11 var num_actions = 5;
12 var temporal_window = 3; //1 // amount of temporal memory. 0 = agent lives
in-the-moment :)
13 var network_size = num_inputs * temporal_window + num_actions *</pre>
```

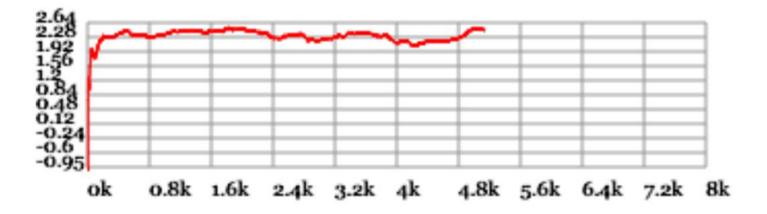
Apply Code/Reset Net

Watch out: kills trained state!

January

Training

- Done on separate thread (Web Workers, yay!)
 - Separate simulation, resets, state, etc.
 - A lot faster (1000 fps +)
- Net state gets shipped to the main simulation from time to time
 - You get to see the improvements/learning live



Training

trainIterations = 100000;

Run Training

...

Loading/Saving

Save Code/Net to File

Danger: Overwrites all of your code and the trained net

Load Code/Net from File

Course 6.S094: Lex Fridman: Deep Learning for Self-Driving Cars fridman@mit.edu Website:

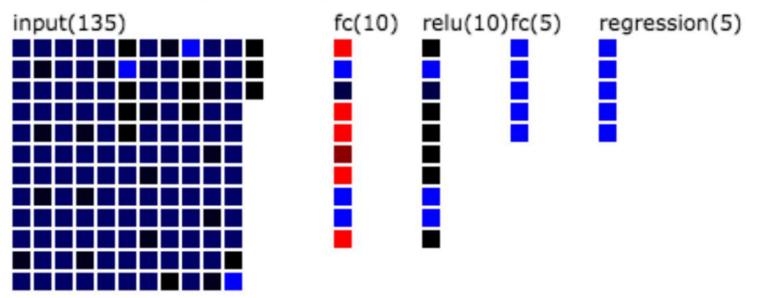
Submitting

Submit Model to Competition

- Submits your code and the trained net state
 - Make sure you ran training!
- Adds your code to the end of a queue
 - Gets evaluated some time (no promises here)
- You can resubmit as often as you like
 - If your code wasn't evaluated yet it we still remove it from the queue (and move you to the end)
 - The highest/most recent???? score counts.

ConvNetJS / The Actual Deep Learning Part

Value Function Approximating Neural Network:



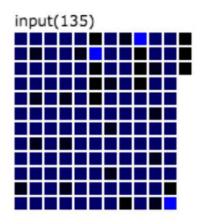
ConvNetJS: Settings

```
var num_inputs = (lanesSide * 2 + 1) * (patchesAhead + patchesBehind);
var num_actions = 5;
var temporal_window = 3;
var network_size = num_inputs * temporal_window + num_actions *
temporal_window + num_inputs;
```


ConvNetJS: Input

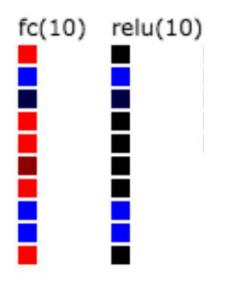
```
var layer_defs = [];
layer_defs.push({
    type: 'input',
    out_sx: 1,
    out_sy: 1,
    out_depth: network_size
```

});



ConvNetJS: Hidden / Fully Connected Layers

```
layer_defs.push({
    type: 'fc',
    num_neurons: 10,
    activation: 'relu'
});
```



Course 6.S094: Deep Learning for Self-Driving Cars fridman@mit.edu Website:

ConvNetJS: Output Layer

```
layer_defs.push({
    type: 'regression',
    num_neurons: num_actions
});
```


 Course 6.S094:
 Lex Fridman:
 Website:

 Deep Learning for Self-Driving Cars
 fridman@mit.edu
 cars.mit.edu

ConvNetJS: Options

```
var opt = \{\};
opt.temporal_window = temporal_window;
opt.experience size = 3000;
opt.start_learn_threshold = 500;
opt.gamma = 0.7;
opt.learning_steps_total = 10000;
opt.learning steps burnin = 1000;
opt.epsilon min = 0.0;
opt.epsilon test time = 0.0;
opt.layer_defs = layer_defs;
opt.tdtrainer_options = {
    learning_rate: 0.001, momentum: 0.0, batch_size: 64, l2_decay: 0.01
};
```

brain = new deepqlearn.Brain(num_inputs, num_actions, opt);

ConvNetJS: Learning

```
learn = function (state, lastReward) {
    brain.backward(lastReward);
    var action = brain.forward(state);
```

```
draw_net();
draw_stats();
```

```
return action;
```


}

January

Technical Details (How We Built The Game)

- Monaco Editor
- HTML5 Canvas
- Web Workers

Monaco Editor

```
<script src="monaco-editor/min/vs/loader.js"></script>
<script>
    require.config({
        paths: {
            'vs': 'monaco-editor/min/vs'
        }
    });
    require(['vs/editor/editor.main'], function () {
        editor = monaco.editor.create(document.getElementById('container'), {
            value: "some code ...",
            language: 'javascript',
            wrappingColumn: 75,
        }):
    }):
</script>
```


HTML5 Canvas

```
<canvas id="canvas" width="400" height="700"></canvas>
<script>
var ctx = document.getElementById('canvas').getContext('2d');
ctx.fillStyle = 'rgba(0,120,250,0.5)';
ctx.fillRect(0, 0, 100, 100);
</script>
```


Web Workers

```
//main.js
if (window.Worker) {
    var myWorker = new Worker("worker.js");
    myWorker.onmessage = function (e) {
        console.log(e.data);
    };
}
//worker.js
```

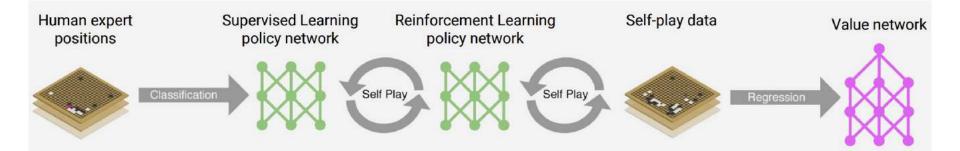
```
postMessage("Hello world!");
```

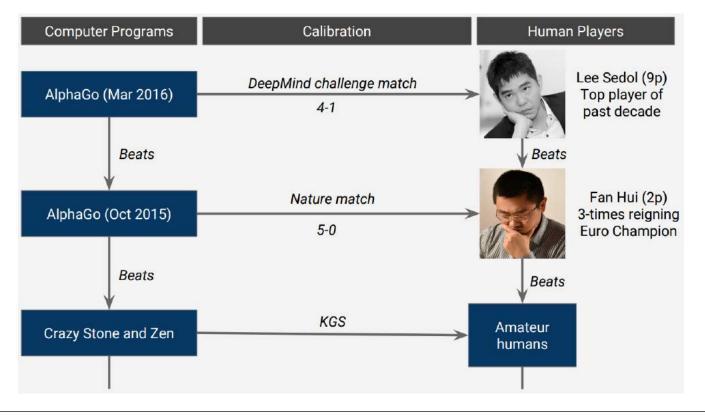

Tutorial: http://cars.mit.edu/deeptraffic

Simulation: http://cars.mit.edu/deeptrafficjs

Course 6.S094: Lex Fridman: Deep Learning for Self-Driving Cars fridman@mit.edu

Human-in-the-Loop Reinforcement Learning: Driving Ready?





References: [83]

Course 6.S094: Deep Learning for Self-Driving Cars Lex Fridman: fridman@mit.edu

Reminder: Unexpected Local Pockets of High Reward

References: [63, 64]

Course 6.S094: Deep Learning for Self-Driving Cars

Lex Fridman: fridman@mit.edu

References

All references cited in this presentation are listed in the following Google Sheets file:

https://goo.gl/9Xhp2t

